Activation of glycogen synthase kinase-3 inhibits long-term potentiation with synapse-associated impairments.
نویسندگان
چکیده
Activation of glycogen synthase kinase-3 (GSK-3) can cause memory deficits as seen in Alzheimer's disease, the most common age-associated dementia, but the mechanism is not understood. Here, we found that activation of GSK-3 by wortmannin or transient overexpression of wild-type GSK-3beta could suppress the induction of long-term potentiation (LTP) in rat hippocampus, whereas simultaneous inhibition of GSK-3 by lithium or SB216763 or transient expression of a dominant-negative GSK-3beta mutant (dnGSK-3beta) preserved the LTP. After high-frequency stimulation (HFS), the presynaptic release of glutamate and the expression/clustering of synapsin I, a synaptic vesicle protein playing an important role in neurotransmitter release, decreased markedly after upregulation of GSK-3. In vitro studies further demonstrated that GSK-3 inhibited the expression of SynI independent of HFS. In postsynaptic level, the expression of PSD93 and NR2A/B proteins decreased significantly when GSK-3 was activated. The LTP-associated synapse impairments including less presynaptic active zone, thinner postsynaptic density, and broader synaptic cleft were also prominent in the hippocampal slices after HFS with activation of GSK-3. These synaptic impairments were attenuated when GSK-3 was simultaneously inhibited by LiCl or SB216763 or transient expression of dnGSK-3. We conclude that upregulation of GSK-3 impairs the synaptic plasticity both functionally and structurally, which may underlie the GSK-3-involved memory deficits.
منابع مشابه
Activation of a synapse weakening pathway by human Val66 but not Met66 pro-brain-derived neurotrophic factor (proBDNF)
This study describes a fundamental functional difference between the two main polymorphisms of the pro-form of brain-derived neurotrophic factor (proBDNF), providing an explanation as to why these forms have such different age-related neurological outcomes. Healthy young carriers of the Met66 form (present in ∼30% Caucasians) have reduced hippocampal volume and impaired hippocampal-dependent me...
متن کاملLTP inhibits LTD in the hippocampus via regulation of GSK3beta.
Glycogen synthase kinase-3 (GSK3) has been implicated in major neurological disorders, but its role in normal neuronal function is largely unknown. Here we show that GSK3beta mediates an interaction between two major forms of synaptic plasticity in the brain, N-methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP) and NMDA receptor-dependent long-term depression (LTD). In ra...
متن کاملSoluble Oligomers of Amyloid β Protein Facilitate Hippocampal Long-Term Depression by Disrupting Neuronal Glutamate Uptake
In Alzheimer's disease (AD), the impairment of declarative memory coincides with the accumulation of extracellular amyloid-beta protein (Abeta) and intraneuronal tau aggregates. Dementia severity correlates with decreased synapse density in hippocampus and cortex. Although numerous studies show that soluble Abeta oligomers inhibit hippocampal long-term potentiation, their role in long-term syna...
متن کاملGSK-3β and memory formation
In Alzheimer's disease (AD), tau hyperphosphorylation and neurofibrillary tangle (NFT) formation are strongly associated with dementia, a characteristic and early feature of this disease. Glycogen synthase kinase 3β (GSK-3β) is a pivotal kinase in both the normal and pathological phosphorylation of tau. In the diseased state, hyperphosphorylated tau is deposited in NFTs, the formation of which,...
متن کاملDysregulation of the mTOR Pathway Mediates Impairment of Synaptic Plasticity in a Mouse Model of Alzheimer's Disease
BACKGROUND The mammalian target of rapamycin (mTOR) is an evolutionarily conserved Ser/Thr protein kinase that plays a pivotal role in multiple fundamental biological processes, including synaptic plasticity. We explored the relationship between the mTOR pathway and β-amyloid (Aβ)-induced synaptic dysfunction, which is considered to be critical in the pathogenesis of Alzheimer's disease (AD). ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 27 45 شماره
صفحات -
تاریخ انتشار 2007